QUIONE, a quantum simulator capable of observing individual atoms in a strontium quantum gas

Quantum physics needs high-precision sensing techniques to delve deeper into the microscopic properties of materials. From the analog quantum processors that have emerged recently, the so-called quantum-gas microscopes have proven to be powerful tools for understanding quantum systems at the atomic level. These devices produce images of quantum gases with very high resolution: they allow individual atoms to be detected.

Read more

Surprising reversal in quantum systems

Researchers at ETH Zurich, who are also members of the Dynamite project team, have studied topological effects in an artificial solid, making surprising observations. The new insights into topological pumping could be used for quantum technologies in the future.

Read more

Researchers theoretically unveil high harmonic generation as a new source of squeezed quantum light

A team of researchers, some of them Dynamite team members, theoretically prove that the emitted light after a high harmonic generation (HHG) process is not classical, but quantum and squeezed. The study unveils the potential of HHG as a new source of bright entangled and squeezed light, two inherent quantum features with several cutting-edge applications within quantum technologies.

Read more